Effect of orthophosphate, nucleotide analogues, ADP, and phosphorylation on the cytoplasmic domains of Ca(2+)-ATPase from scallop sarcoplasmic reticulum.
نویسندگان
چکیده
The effects of orthophosphate, nucleotide analogues, ADP, and covalent phosphorylation on the tryptic fragmentation patterns of the E1 and E2 forms of scallop Ca-ATPase were examined. Sites preferentially cleaved by trypsin in the E1 form of the Ca-ATPase were detected in the nucleotide (N) and phosphorylation (P) domains, as well as the actuator (A) domain. These sites were occluded in the E2 (Ca(2+)-free) form of the enzyme, consistent with mutual protection of the A, N, and P domains through their association into a clustered structure. Similar protection of cytoplasmic Ca(2+)-dependent tryptic cleavage sites was observed when the catalytic binding site for substrate on the E1 form of scallop Ca-ATPase was occupied by Pi, AMP-PNP, AMP-PCP, or ADP despite the presence of saturating levels of Ca2+. These results suggest that occupation of the catalytic site on E1 can induce condensation of the cytoplasmic domains to yield a unique structural intermediate that may be related to the form of the enzyme in which the active site is prepared for phosphoryl transfer. The effect of Pi on the E2 form of the scallop Ca-ATPase was also investigated, when it was found that formation of E2-P led to extreme resistance toward secondary cleavage by trypsin and stabilization of enzymatic activity for long periods of time.
منابع مشابه
Molecular mechanism of regulation of Ca2+ pump ATPase by phospholamban in cardiac sarcoplasmic reticulum. Effects of synthetic phospholamban peptides on Ca2+ pump ATPase.
The molecular mechanism of the regulation of Ca2+ pump ATPase by phospholamban in cardiac sarcoplasmic reticulum was examined using synthetic peptides of phospholamban and purified Ca2+ pump ATPase from cardiac sarcoplasmic reticulum. The phospholamban monomer of 52 amino acid residues contains two distinct domains, the cytoplasmic (amino acids 1-30) and the transmembrane (amino acids 31-52) do...
متن کاملInteraction of D-600 with the transmembrane domain of the sarcoplasmic reticulum Ca(2+)-ATPase.
Experiments were performed to determine whether the organic Ca(2+) channel blocker D-600 (gallopamil), which penetrates into muscle cells, affects sarcoplasmic reticulum (SR) Ca(2+) uptake by directly inhibiting the light SR Ca(2+)-ATPase. We have previously shown that at 10 microM, D-600 inhibits LSR ATP-dependent Ca(2+) uptake by 50% but has no effect on ATPase activity (21). These data sugge...
متن کاملpH and magnesium dependence of ATP binding to sarcoplasmic reticulum ATPase. Evidence that the catalytic ATP-binding site consists of two domains.
Nucleotide binding to sarcoplasmic reticulum vesicles was investigated in the absence of calcium using both filtration and fluorescence measurements. Filtration assays of binding of radioactive nucleotides at concentrations up to 0.1 mM gave a stoichiometry of one ATP-binding site/sarcoplasmic reticulum ATPase molecule. When measured in the presence of calcium under otherwise similar conditions...
متن کاملA structural model for the catalytic cycle of Ca(2+)-ATPase.
Ca(2+)-ATPase is responsible for active transport of calcium ions across the sarcoplasmic reticulum membrane. This coupling involves an ordered sequence of reversible reactions occurring alternately at the ATP site within the cytoplasmic domains, or at the calcium transport sites within the transmembrane domain. These two sites are separated by a large distance and conformational changes have l...
متن کاملInteraction of D-600 with the transmembrane domain of the sarcoplasmic reticulum Ca-ATPase
Ortega, Alicia, V. M. Becker, R. Alvarez, J. R. Lepock, and H. Gonzalez-Serratos. Interaction of D-600 with the transmembrane domain of the sarcoplasmic reticulum CaATPase. Am J Physiol Cell Physiol 279: C166–C172, 2000.—Experiments were performed to determine whether the organic Ca channel blocker D-600 (gallopamil), which penetrates into muscle cells, affects sarcoplasmic reticulum (SR) Ca up...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 279 7 شماره
صفحات -
تاریخ انتشار 2004